Center for

Responsible

Nanotechnology
 

 


WWW CRN ONLY
 




New!
 

Nanotech Scenario Series



Donate Now






 

 Join the  conversation at CRNtalk!

 

Current Results of Our Research

These pages, marked with GREEN headings, are published for comment and criticism. These are not our final findings; some of these opinions will probably change.   LOG OF UPDATES 

CRN Research: Overview of Current Findings   

bulletTimeline for Molecular Manufacturing   
bulletProducts of Molecular Manufacturing
bulletBenefits of Molecular Manufacturing
bulletDangers of Molecular Manufacturing  
bulletNo Simple Solutions
bulletAdministration Options
bulletThe Need for Early Development
bulletThe Need for International Development
bulletThirty Essential Nanotechnology Studies
bulletStudy #18     YOU ARE HERE

Thirty Essential Nanotechnology Studies - #18

Overview of all studies: Because of the largely unexpected transformational power of molecular manufacturing, it is urgent to understand the issues raised. To date, there has not been anything approaching an adequate study of these issues. CRN's recommended series of thirty essential studies is organized into five sections, covering fundamental theory, possible technological capabilities, bootstrapping potential, product capabilities, and policy questions. Several preliminary conclusions are stated, and because our understanding points to a crisis, a parallel process of conducting the studies is urged. 

CRN is actively looking for researchers interested in performing or assisting with this work. Please contact CRN Research Director Chris Phoenix if you would like more information or if you have comments on the proposed studies.

Study #18 What new products will the system make accessible?
  For each suggested field, determine if a molecular manufacturing system would allow significant advances compared with what can be built by alternative systems.
Subquestion Aerospace?
Preliminary answer Yes. Figure an airplane (spacecraft, missile) might weigh 1% of its current dry weight, with essentially unlimited onboard computer power. Also, smaller actuators will make shape-changing and active skin feasible and even cheap. Continuously inverting skin might allow more efficient and higher-speed designs.
Subquestion Computational systems: data mining, strong artificial intelligence?
Preliminary answer For comparison, the NEC Earth Simulator could be built in a cubic millimeter and draw 2 watts.
Subquestion Medical, including human enhancement?
Preliminary answer Yes. A basic computer/sensor package could be smaller than a neuron. This could easily allow direct high-bandwidth brain-to-computer communication; already, primitive brain-implanted electrode arrays have detected a rat's position with respect to its cage, a monkey's intention to move its arm, and the image from a cat's optical nerve.
Subquestion Weapons (a very broad category)?
Preliminary answer Yes. For example: micro UAVs with sufficient functionality to be loaded with chemical poisons; electrical power density high enough to enable new classes of projectile weapons; cheap deployment of massive systems or networks; expanding-microtruss fuel-air explosives; much easier access to space.
Conclusion Diamondoid nanofactory molecular manufacturing would allow fundamentally new products in several important and problematic areas. It is impossible to predict or make a comprehensive list of all products that could be created.
 
Other studies 1. Is mechanically guided chemistry a viable basis for a manufacturing technology?
2. To what extent is molecular manufacturing counterintuitive and underappreciated in a way that causes underestimation of its importance?
3.
What is the performance and potential of diamondoid machine-phase chemical manufacturing and products?
4. What is the performance and potential of biological programmable manufacturing and products?
5. What is the performance and potential of nucleic acid manufacturing and products?
6. What other chemistries and options should be studied?
7.
What applicable sensing, manipulation, and fabrication tools exist?
8. What will be required to develop diamondoid machine-phase chemical manufacturing and products?
9. What will be required to develop biological programmable manufacturing and products?
10. What will be required to develop nucleic acid manufacturing and products?
11. How rapidly will the cost of development decrease?
12. How could an effective development program be structured?
13.
What is the probable capability of the manufacturing system?
14. How capable will the products be?
15. What will the products cost?
16. How rapidly could products be designed?
17.
Which of today's products will the system make more accessible or cheaper?
 
19. What impact will the system have on production and distribution?
20. What effect will molecular manufacturing have on military and government capability and planning, considering the implications of arms races and unbalanced development?
21. What effect will this have on macro- and microeconomics?
22. How can proliferation and use of nanofactories and their products be limited?
23. What effect will this have on policing?
24. What beneficial or desirable effects could this have?
25. What effect could this have on civil rights and liberties?
26. What are the disaster/disruption scenarios?
27. What effect could this have on geopolitics?
28. What policies toward development of molecular manufacturing does all this suggest?
29. What policies toward administration of molecular manufacturing does all this suggest?
30. How can appropriate policy be made and implemented?
 
Studies should begin immediately. The situation is extremely urgent. The stakes are unprecedented, and the world is unprepared. The basic findings of these studies should be verified as rapidly as possible (months, not years). Policy preparation and planning for implementation, likely including a crash development program, should begin immediately.

DEVIL'S ADVOCATE Submit your criticism, please!

(Sorry, no one has complained about this page yet, and we couldn't think of anything to write. Please contact us with your questions, criticisms, and other suggestions.)

 

             
CRN is a non-profit research and advocacy organization, completely dependent on small grants and individual contributions.

             

Copyright 2002-2008 Center for Responsible Nanotechnology TM        CRN is an affiliate of World Care, an international, non-profit, 501(c)(3) organization.